Quick Base to Tableau

This page provides you with instructions on how to extract data from Quick Base and analyze it in Tableau. (If the mechanics of extracting data from Quick Base seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Quick Base?

"Quick Base is a low-code database and application development platform. It lets teams work with a common data repository to build forms, create reports, set up workflows, and automate processes. And its low-code capability enables non-developers, sometimes called citizen developers, to create applications without having to request time and attention from the IT department." (Source: Computerworld)

What is Tableau?

Tableau is one of the world's most popular analysis platforms. The software helps companies model, explore, and visualize their data. It also offers cloud capabilities that allow analyses to be shared via the web or company intranets, and its offerings are available as both installed software and as a SaaS platform. Tableau is widely known for its robust and flexible visualization capabilities, which include dozens of specialized chart types.

In addition to its business software, Tableau also offers a free product called Tableau Public for analyzing open data sets. If you're new to Tableau, this offering is a great way to experience Tableau's capabilities at no cost and share your work publicly.

Getting data out of Quick Base

Quick Base has a REST API that developers can use to get at information stored in the platform. The API relies on XML for data interchange. To get information about a database by name, you would create and post an XML file like this:

<qdbapi>
   <ticket>auth_ticket</ticket>
   <dbname>TestTable</dbname>
</qdbapi>

Sample Quick Base data

Here's an example of the kind of response you might see with a query like the one above.

<?xml version="1.0" ?>
<qdbapi>
   <action>API_FindDBByName</action>
   <errcode>0</errcode>
   <errtext>No error</errtext>
   <dbid>bdcagynhs</dbid>
</qdbapi>

Preparing Quick Base data

If you don't already have a data structure in which to store the data you retrieve, you'll have to create a schema for your data tables. Then, for each value in the response, you'll need to identify a predefined datatype (INTEGER, DATETIME, etc.) and build a table that can receive them. Quick Base's documentation should tell you what fields are provided by each endpoint, along with their corresponding datatypes.

Complicating things is the fact that the records retrieved from the source may not always be "flat" – some of the objects may actually be lists. In these cases you'll likely have to create additional tables to capture the unpredictable cardinality in each record.

Loading data into Tableau

Analyzing data in Tableau requires putting it into a format that Tableau can read. Depending on the data source, you may have options for achieving this goal, but the best practice among most businesses is to build a data warehouse that contains the data, and then connect that data warehouse to Tableau.

Tableau provides an easy-to-use Connect menu that allows you to connect data from flat files, direct data sources, and data warehouses. In most cases, connecting these sources is simply a matter of creating and providing credentials to the relevant services.

Once the data is connected, Tableau offers an option for locally caching your data to speed up queries. This can make a big difference when working with slower database platforms or flat files, but is typically not necessary when using a scalable data warehouse platform. Tableau's flexibility and speed in these areas are among its major differentiators in the industry.

Analyzing data in Tableau

Tableau's report-building interface may seem intimidating at first, but it's one of the most powerful and intuitive analytics UIs on the market. Once you understand its workflow, it offers fast and nearly limitless options for building reports and dashboards.

If you're familiar with Pivot Tables in Excel, the Tableau report building experience may feel somewhat familiar. The process involves selecting the rows and columns desired in the resulting data set, along with the aggregate functions used to populate the data cells. Users can also specify filters to be applied to the data and choose a visualization type to use for the report.

You can learn how to build a report from scratch for free (although a sign-in is required) from the Tableau documentation.

Keeping Quick Base data up to date

At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.

Instead, identify key fields that your script can use to bookmark its progression through the data and use to pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Quick Base. And remember, as with any code, once you write it, you have to maintain it. If Quick Base modifies its API, or the API sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.

From Quick Base to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing Quick Base data in Tableau is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Quick Base to Redshift, Quick Base to BigQuery, Quick Base to Azure Synapse Analytics, Quick Base to PostgreSQL, Quick Base to Panoply, and Quick Base to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to move data automatically, making it easy to integrate Quick Base with Tableau. With just a few clicks, Stitch starts extracting your Quick Base data, structuring it in a way that's optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Tableau.